The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally
نویسندگان
چکیده
Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ(70)-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis.
منابع مشابه
The Influence of Repressor DNA Binding Site Architecture on Transcriptional Control
UNLABELLED How the architecture of DNA binding sites dictates the extent of repression of promoters is not well understood. Here, we addressed the importance of the number and information content of the three direct repeats (DRs) in the binding and repression of the icdA promoter by the phosphorylated form of the global Escherichia coli repressor ArcA (ArcA-P). We show that decreasing the infor...
متن کاملA two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli.
The general stress sigma factor sigma(S) (RpoS) in Escherichia coli is controlled at the levels of transcription, translation, and proteolysis. Here we demonstrate that the phosphorylated response regulator ArcA is a direct repressor of rpoS transcription that binds to two sites flanking the major rpoS promoter, with the upstream site overlapping an activating cAMP-CRP-binding site. The histidi...
متن کاملThe global regulator ArcA modulates expression of virulence factors in Vibrio cholerae.
A Vibrio cholerae arcA mutant was constructed and used to examine the role of the global anaerobiosis response regulator ArcA in the expression of virulence factors in this important human pathogen. In V. cholerae, expression of the major virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) is regulated by the transcriptional activator ToxT. toxT expression, in turn, is contro...
متن کاملArcA regulator of Gamma-Proteobacteria: Identification of the Binding Signal and Description of the Regulon
Basing on a common signal previously identified in nine regions upstream of Escherichia coli genes regulated by ArcA, orthologous ArcA-regulated genes were identified in genomes of gamma-proteobacteria: Escherichia coli, Yersinia pestis, Pasteurella multocida, and Vibrio vulnificus. In addition to 10 genes in the training set, 23 new genes with conserved candidate ArcA-binding sites were identi...
متن کاملBinding Motifs in Bacterial Gene Promoters Modulate Transcriptional Effects of Global Regulators CRP and ArcA
Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013